Composing Meta-Policies for Autonomous Driving Using Hierarchical Deep Reinforcement Learning
نویسندگان
چکیده
Rather than learning new control policies for each new task, it is possible, when tasks share some structure, to compose a "meta-policy" from previously learned policies. This paper reports results from experiments using Deep Reinforcement Learning on a continuous-state, discrete-action autonomous driving simulator. We explore how Deep Neural Networks can represent meta-policies that switch among a set of previously learned policies, specifically in settings where the dynamics of a new scenario are composed of a mixture of previously learned dynamics and where the state observation is possibly corrupted by sensing noise. We also report the results of experiments varying dynamics mixes, distractor policies, magnitudes/distributions of sensing noise, and obstacles. In a fully observed experiment, the meta-policy learning algorithm achieves 2.6x the reward achieved by the next best policy composition technique with 80% less exploration. In a partially observed experiment, the meta-policy learning algorithm converges after 50 iterations while a direct application of RL fails to converge even after 200 iterations.
منابع مشابه
Simulated Autonomous Driving on Realistic Road Networks using Deep Reinforcement Learning
Using Deep Reinforcement Learning (DRL) can be a promising approach to handle various tasks in the field of (simulated) autonomous driving. However, recent publications mainly consider learning in unusual driving environments. This paper presents Driving School for Autonomous Agents (DSA2), a software for validating DRL algorithms in more usual driving environments based on artificial and reali...
متن کاملFederated Control with Hierarchical Multi-Agent Deep Reinforcement Learning
We present a framework combining hierarchical and multi-agent deep reinforcement learning approaches to solve coordination problems among a multitude of agents using a semi-decentralized model. The framework extends the multi-agent learning setup by introducing a meta-controller that guides the communication between agent pairs, enabling agents to focus on communicating with only one other agen...
متن کاملEnd-to-End Deep Reinforcement Learning for Lane Keeping Assist
Reinforcement learning is considered to be a strong AI paradigm which can be used to teach machines through interaction with the environment and learning from their mistakes, but it has not yet been successfully used for automotive applications. There has recently been a revival of interest in the topic, however, driven by the ability of deep learning algorithms to learn good representations of...
متن کاملFine-grained acceleration control for autonomous intersection management using deep reinforcement learning
Recent advances in combining deep learning and Reinforcement Learning have shown a promising path for designing new control agents that can learn optimal policies for challenging control tasks. These new methods address the main limitations of conventional Reinforcement Learning methods such as customized feature engineering and small action/state space dimension requirements. In this paper, we...
متن کاملCombining Deep Reinforcement Learning and Safety Based Control for Autonomous Driving
With the development of state-of-art deep reinforcement learning, we can efficiently tackle continuous control problems. But the deep reinforcement learning method for continuous control is based on historical data, which would make unpredicted decisions in unfamiliar scenarios. Combining deep reinforcement learning and safety based control can get good performance for self-driving and collisio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1711.01503 شماره
صفحات -
تاریخ انتشار 2016